
Pseudoinstructions
To make hand-written assembly coding easier, most

RISC-V assemblers accept the following instructions as
input, and produce the equivalent RISC-V instructions
(so disassembly might not look familiar)

Registers/calling conventions

callee saved registers must be saved to the stack by a func-
tion if it modifies them.

caller saved registers are assumed to be over-written, so
they must be saved by the caller before they call any
other function if they need those values.

To save to the stack, decrement the stack pointer then store to
offset(sp). To restore from the stack, load from offset(sp).
See the factorial example on this card for an example.
Compilers often use a frame pointer, stored in fp, to simplify
accounting of what’s currently in scope. It’s common for
hand-written assembly to just use the stack pointer.

RISC-V is an open instruction set architecture, meaning anyone can
implement and modify it. Many implementations already exist,
and more are coming in 2020 and beyond.

RISC-V already defines a number of variants, including I (integer-
only), M (includes multiplier) 32/64 (word-size in bits), E
(minimized, for embedded), F (floating point), etc. The version
documented here is approximately RV32IM, as supported by the
Jupiter IDE and simulator.

Prepared by Dylan McNamee as supporting material for a CS 2 class.
Please send comments, corrections, suggestions to
dylan.mcnamee@gmail.com.
Released under the Creative Commons Attribution-Share Alike li-
cense.

basic
assembly
programmer’s
quick reference
card

v0.42 2022/6/23
	 RV32IM

name pseudo-instruction meaning
branch if = 0 beqz rs1, label jump to label if rs1 == 0

branch if ≠ 0 bnez rs1, label jump to label if rs1 ≠ 0

jump j label jump to label

jump register jr offset jalr

load address la rd, symbol rd ← symbol address

load immediate li rd, expr rd ← expr value

move mv rd, rs rd ← rs

negate neg rd, rs rd ← -1 * rs

no operation nop pc advances

bitwise not not rd, rs rd ← ¬ rs

return ret pc ← ra

set = zero seqz rd, rs rd ← rs == 0 ? 1 : 0

set ≠ 0 snez rd, rs rd ← rs ≠ 0 ? 1 : 0

reg name use saved by
x0 zero constant 0 -

x1 ra return addr caller

x2 sp stack pointer callee

x3 gp global pointer -

x4 tp thread pointer -

x5-x7 t0-t2 temporaries caller

x8 s0/fp saved reg/ frame pointer callee

x9 s1 saved reg callee

x10-x11 a0-a1 args / return values caller

x12-x17 a2-a7 function args callee

x18-x27 s2-s11 saved registers callee

x28-x31 t3-t6 temporaries caller

31
0

6

funct7
rs

2
rs

1
funct3

rd
opcode

11
7

12
14

15
19

20
24

25

R
im

m
rs

1
funct3

rd
opcode

I
im

m
rs

2
rs

1
funct3

im
m

opcode
S

im
m

rs
2

rs
1

funct3
im

m
opcode

SB
im

m
rd

opcode
U

im
m

rd
opcode

UJ

RV
32I Instruction layout

mailto:dylan.mcnamee@gmail.com

Hello, world!
Jupiter is an open source RISC-V assembly IDE. It

can be downloaded from https://github.com/andrescv/
Jupiter. A RISC-V assembly program consists of
sections , indicated by assembler directives, which start with a 1

“.”, along with variable/function declarations, indicated
by a “:”, as well as assembly instructions.

Below is “Hello, world” in RISC-V assembly. Type it
into Jupiter’s Edit screen, then assemble it (F3) and run it
with the green “play” button.

RISC-V is a load-store architecture, which means that
any operations on memory need to first load the memory
into a register, then perform the operation, and finally
store the result back to memory.

The register assembly instructions have the form:
opcode dest-register, source-register1, src2

Hello, world in RVI32. Note: comments start with #
.data # .data => read-write variables - 3 are defined here:
 # name type value
 hello: .string "Hello, world!\n"
 aByte: .byte 0x42
 aWord: .word 0xcafef00d
.globl __start # .globl symbols are visible outside this file
.text # .text => program instructions
__start:
 la a1, hello # la is a pseudoinstruction
 addi a0, x0, 4 # a0 <- 4 (print_string)
 ecall # executes the call specified in a0
 addi a1, x0, 0 # could also use li a1, 0
 addi a0, x0, 17 # exit in Jupiter
 ecall # doesn’t return

Jupiter environment calls
Environment calls are how an assembly program inter-

acts with the environment, such as reading input, or
printing output. They often take arguments in register
a1, the system call code is loaded in a0, and the ecall
instruction initiates the system call. Any return value is
left in a0

Basic instruction set
The table below shows enough instructions for you to write

many useful programs in RISC-V assembly.
rd is the destination register
rs1/rs2 are source registers
imm is an immediate value such as 0 or 0xf00d

Notes: when loading or storing from memory, parentheses
are used to describe indirection - the value inside of parenthe-
ses is a pointer, and that memory location is operated on.

Arithmetic operations can operate on signed or unsigned en-
codings. The unsigned operations have u appended to their
names.

Many operations can take either registers as their second
argument, or an immediate value (or constant). Immediate values
are just numbers in decimal (e.g., 12) or hexadecimal (e.g. 0xfa).
These instructions end in i

The set less-than operators set the destination register to 1
if the condition is true, and 0 if it is false.

Conditionals and jumps
.data
 prompt: .string "give me a number for analysis:"
 big_msg: .string "wow-that's a big number!"
 small_msg:.string "aww, what a cute number"
.globl __start
.text
__start:
 la a1, prompt
 li a0, 4 # print_string
 ecall
 li a0, 5 # read_int
 ecall
 li t0, 6 # threshold for comparison
 blt a0, t0, smaller # jump if small input
fall through to here if not smaller
 li a0, 4
 la a1, big_msg
 ecall # print msg call
 j done
smaller:
 li a0, 4 # print msg call
 la a1, small_msg
 ecall
done:
 li a0, 17 # exit call
 li a1, 0 # exit code (0 == ok)
 ecall

Functions, the stack and recursion
.text # recursive implementation of factorial
.globl __start
fact: # arg: n in a0, returns n! in a1
 addi sp, sp, -8 # reserve our stack area
 sw ra, 0(sp) # save the return address
 li t0, 2
 blt a0, t0, ret_one # 0! and 1! == 1
 sw a0, 4(sp) # save our n
 addi a0, a0, -1
 jal fact # call fact (n-1)
 # a1 <- fact(n-1)
 lw t0, 4(sp) # t0 <- n
 mul a1, t0, a1 # a1 <- n * fact(n-1)
 j done
ret_one:
 li a1, 1
done:
 lw ra, 0(sp) # restore return address from stack
 addi sp, sp, 8 # free our stack frame
 jr ra # and return

__start:
 li a0, 5 # compute 5!
 jal fact
 li a0, 1 # print it
 ecall
 li a0, 17
 ecall # and exit

name code args return
print_int 1 a1 (i32)

print_string 4 a1 (addr)

read_int 5 i32 in a0

read_string 8 a0(addr), a1(len)

sbrk (alloc mem) 9 a1 (amount) addr in a0 (or 0)

exit 17 a0 (i32) exit value

name format meaning

load word lw rd, imm(rs) rd ← (rs+imm)

store word sw rs1, imm(rs2) (rs2+imm) ← rs1

shift left sll rd, rs1, rs2 rd ← rs1 << rs2

shift left imm slli rd, rs1, imm rd ← rs1 << imm

shift right srl rd, rs1, rs2 rd ← rs1 >> rs2

shift right arith sra rd, rs1, rs2 rd ← rs1 >> rs2

xor(imm) xor(i) rd, rs1, rs2(/imm) rd ← rs1 ⊕ (rs2 or imm)

or(imm) or(i) rd, rs1, rs2(/imm) rd ← rs1 | (rs2 or imm)

and(imm) and rd, rs1, rs2(/imm) rd ← rs1 & (rs2 or imm)

add(imm) add(i) rd, rs1, rs2(/imm) rd ← rs1 + (rs2 or imm)

subtract sub rd, rs1, rs2 rd ← rs1 - rs2

multiply(unsigned) mul(u) rd, rs1, rs2 rd ← rs1 * rs2

divide(unsigned) div(u) rd, rs1, rs2 rd ← rs1 / rs2

remainder
(unsigned)

rem(u) rd, rs1, rs2 rd ← rs1 % rs2

set less-than slt(i) rd, rs1, rs2(/imm) rd ← rs1 < (rs2 or imm)

set less-than
unsigned

sltu(i) rd, rs1, rs2(/imm) rd ← rs1 < (rs2 or imm)

branch if == beq rs1, rs2, label jumps to label if rs1 == rs2

branch if ≠ bne rs1, rs2, label jumps to label if rs1 ≠ rs2

branch if < blt(u) rs1, rs2, label jumps to label if rs1 < rs2

branch if ≥ bge(u) rs1, rs2, label jumps to label if rs1 ≥ rs2

jump and link jal label jumps to label, ra ← return

jump and link reg jalr rd, label jumps to label, rd ← return

 valid sections include: .data, .text (as in the example) as well as  1

 .bss for uninitialized data, and .rodata for read-only variables.

