
Objective-C Reference Card
(for Java Programmers)

Basic Syntax

All of C syntax is inherited by Objective C with the following
additions:

Declare objectx to be a pointer to an object of type MyClass,
allocate and initialize it:

MyClass *objectx = [[MyClass alloc] init];

Invoke methodf of objectx, no args [objectx methodf];

Invoke methodg of objectx, passing arg1

[objectx methodg: arg1];

Methods with more than one argument:

[objectx initWithData: myData andParent: myParent];

Header File

MyClass.h:

@interface MyClass : MySuperClass

{

int instanceVar1;

NSString *instanceVar2;

MyClass *nextOneOfMe;

}

- (void) methodf;

- (void) methodg: (ClassA *) argname;

- (void) initWithData: (Data *) data

andParent: (MyClass *) parent;

+ (void) classMethod;

@end

Implementation File

MyClass.m:

#import"MyClass.h"

@implementation MyClass

- (void) methodf

{

// do something good

}

- (void) methodg: (ClassA *) arg

{

// do something good with arg

}

- (void) initWithData: (Data *) data

andParent: (MyClass *) parent;

{

// do something good with data and parent

}

@end

Protocols (like Java Interfaces)

MyProtocol.h:

@protocol MyProtocol

- (void) aProtocolMethod;

- (void) anotherProcotolMethod;

@end

A class that adopts a protocol would do the following:

#import "MyProtocol.h"

@interface ClassName : ItsSuperclass < MyProtocol,

AnotherProtocol >

// method declarations

@end

Categories (extend any class)

If you want to extend any class in the system, in this exam-
ple ClassName, first define a category in a header file. Note: a
category cannot define any instance variables, just new meth-
ods.

CategoryName.h:

#import "ClassName.h"

@interface ClassName (CategoryName)

// method declarations

@end

Here is the implementation file

CategoryName.m:

#import "CategoryName.h"

@implementation ClassName (CategoryName)

// method definitions

@end

Note: Categories that extend the class NSObject are called
informal protocols, and behave much like a protocol: they
specify a set of behaviors that a particular object has. See
Misc Hints for testing whether an object has a behavior.

Note2: Categories can be declared within an implementation
file, which is a common way to create “private” methods.

NSString constants

NSString aString = @"the value of aString";

aString is a fully valid instance of NSString, so you can send
it messages like this:

int length = [aString length];

NSString upper = [@"Some String" uppercaseString];

Memory Management 101
If an object calls alloc, copy, or retain, it must also even-
tually release the object (perhaps in another method, or at
least in its -dealloc method.

autorelease performs a release some time after the calling
method has exited. It allows the calling method to use (or
store and retain) the object before the release happens.

If any method stores a pointer to an object internally, it must
retain that object until that pointer is cleared. Care must
be taken when objects have circular references.

Accessor methods pattern:

-(NSString *) getAttr {

return attr;

}

-(void) setAttr:(NSString *)newAttr {

id oldAttr = attr;

attr = [newAttr retain];

[oldAttr release];

}

Note: it’s a good idea to have accessors for all instance
variables. It helps with memory management as well as
Key/Value encoding. Thus, even though Objective C lets you
declare @public, @private and @protected instance vari-
ables, external classes should always use accessors instead
of directly modifying them. Oddly, there’s no way to declare
private methods. See Categories’ Note2 to see how this is
handled.

Exception Handling
As of MacOS X 10.3, exceptions are very similar to Java’s.
Here’s an example:

@throw myException;

...

@try {

[cup fill];

} @catch (NSException *exception) {

NSLog(@"main: Caught %@: %@",

[exception name], [exception reason]);

} @finally {

...

}

Misc Hints
Here’s how you do the equivalent of Java’s instanceof:

[anObject isKindOfClass:[NSPopUpButton class]]

Works for a class, and

[anObject conformsToProtocol: @protocol(MyProtocol)]

checks whether an object implements a protocol, and

[anObject respondsToSelector:

@selector(methodWithArg:)]is pretty much self-
explanatory.

@synchronized(anObject){...} ensures that only one thread
runs the enclosed code, using anObject as the lock.10.3 fea-
ture.

Copyright c© 2004 MeCodeGoodSomeday LLC

v0.7 2004

designed by Dylan McNamee

